Gunter, Jason

From:

James, Kevin <kjames@doerun.com>

Sent:

Wednesday, March 11, 2015 9:31 AM

To:

Gunter, Jason

Cc:

Yingling, Mark; Neaville, Chris; Montgomery, Michael; 'brandon.wiles@dnr.mo.gov'; 'Ty Morris

(TMorris@barr.com)

Subject:

Leadwood Progress Report - February

Attachments:

removed.txt; Leadwood_ProgressReport_02-15.pdf; 2015-02-03 LW NPDES Pace Lab

Report.pdf; 2015-02-25 LW NPDES Pace Lab Report.pdf; Remediation Air Report - January

2015.pdf

Categories:

Red Category

Jason -

Attached is the February Progress Report for the Leadwood Site.

Best regards,

Kevin James

Kevin James

×

Construction Engineering W: 573.626.2096 C: 573.247.6766

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

07CR

40493217 Superfund 4.2

Hemediation Group

Kevin James Construction Engineering Manager kjames@doerun.com

March 11, 2015

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Leadwood Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 50 of the Unilateral Administrative Order (Docket No. CERCLA-07-2006-0272) for the referenced project and on behalf of The Doe Run Company, the progress report for the period February 1, 2015 through February 28, 2015 is enclosed. If you have any questions or comments, please call me at 573-626-2096.

Sincerely,

Kevin James

Construction Engineering Manager

Enclosures

c: Mark Yingling - TDRC (electronic only)

Chris Neaville - TDRC (electronic only)

Michael Montgomery – TDRC (electronic only)

Brandon Wiles - MDNR

Ty Morris – Barr Engineering

Leadwood Mine Tailings Site

Leadwood, Missouri

Removal Action - Monthly Progress Report

Period: February 1, 2015 – February 28, 2015

1. Actions Performed or Completed This Period:

a. Work continued on the development of the Post Removal Site Control Plan for the site.

2. Data and Results Received This Period:

- a. During this period, water samples were collected from downstream of Leadwood Dam and the East Seep and Erosion Area, as well as from upstream and downstream of the confluence of Eaton Creek with Big River. The analytical results for this event are included with this progress report.
- b. During this period, the ambient air monitoring samples for January were processed and the Ambient Air Monitoring Report for January 2015 was completed and is attached. A copy of the Ambient Air Monitoring Report for January is attached.

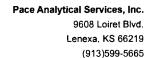
3. Scheduled Activities not Completed This Period:

a. None.

4. Planned Activities for Next Period:

- a. Continue developing the Post Removal Site Control Plan for the site.
- b. Complete monthly water sampling activities as described in the Removal Action Work Plan.
- c. Complete air monitoring activities as described in the Removal Action Work Plan.

5. Changes in Personnel:


a. None.

6. Issues or Problems Arising This Period:

a. None.

7. Resolution of Issues or Problems Arising This Period:

a. None.

February 12, 2015

Amy Sanders The Doe Run Company P. O. Box 500 Viburnum, MO 65566

RE: Project: NPDES (Leadwood)

Pace Project No.: 60187371

Dear Amy Sanders:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE SUMMARY

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60187371001	27002/LEADWOOD DOWNSTREAM	Water	02/03/15 09:11	02/04/15 08:15
60187371002	27003/LEADWOOD UPSTREAM	Water	02/03/15 08:56	02/04/15 08:15
60187371003	27005/LEADWOOD 002	Water	02/03/15 08:36	02/04/15 08:15

(913)599-5665

SAMPLE ANALYTE COUNT

Project:

NPDES (Leadwood)

Pace Project No.: 60187371

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60187371001	27002/LEADWOOD DOWNSTREAM	EPA 200.7	NDJ	6	PASI-K
		EPA 200.7	NDJ	3	PASI-K
		SM 2540D	ESM	1	PASI-K
		EPA 300.0	TDB	1	PASI-K
60187371002 27003/LEADWOOD UPSTREAM	27003/LEADWOOD UPSTREAM	EPA 200.7	NDJ	6	PASI-K
		EPA 200.7	NDJ	3	PASI-K
		SM 2540D	ESM	1	PASI-K
		EPA 300.0	TDB	1	PASI-K
60187371003	27005/LEADWOOD 002	EPA 200.7	NDJ	3	PASI-K
		SM 2540D	ESM	1	PASI-K
		SM 2540F	ESM	1	PASI-K
		EPA 300.0	TDB	1	PASI-K

Project: NPDES (Leadwood)

Pace Project No.: 60187371

Date: 02/12/2015 11:36 AM

Sample: 27002/LEADWOOD DOWNSTREAM	Lab ID: 60187	7371001 Collected	d: 02/03/15	09:11	Received: 02/	04/15 08:15 Ma	atrix: Water	
		Report						
Parameters	Results Un	•	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Metho	od: EPA 200.7 Prepa	aration Metho	od: EP	A 200.7			
Cadmium	ND ug/L	5.0	0.56	1	02/04/15 16:00	02/05/15 11:28	7440-43-9	
Calcium	41100 ug/L	100	7.8	1	02/04/15 16:00	02/05/15 11:28	7440-70-2	
Lead	ND ug/L	5.0	2.2	1	02/04/15 16:00	02/05/15 11:28	7439-92-1	
Magnesium	25600 ug/L	50.0	17.0	1	02/04/15 16:00	02/05/15 11:28	7439-95-4	
Total Hardness by 2340B	208000 ug/L	500		1	02/04/15 16:00	02/05/15 11:28		
Zinc	22.6J ug/L	50.0	12.5	1	02/04/15 16:00	02/05/15 11:28	7440-66-6	
200.7 Metals, Dissolved (LF)	Analytical Metho	od: EPA 200.7 Prepa	aration Metho	od: EP	A 200.7			
Cadmium, Dissolved	ND ug/L	5.0	0.56	1	02/10/15 12:00	02/11/15 11:40	7440-43-9	
Lead, Dissolved	ND ug/L	5.0	2.2	1	02/10/15 12:00	02/11/15 11:40	7439-92-1	
Zinc, Dissolved	17.3J ug/L	50.0	12.5	1	02/10/15 12:00	02/11/15 11:40	7440-66-6	
2540D Total Suspended Solids	Analytical Metho	od: SM 2540D						
Total Suspended Solids	ND mg/L	5.0	5.0	1		02/05/15 14:10		
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 300.0						
Sulfate	25.5 mg/L	2.0	1.0	2		02/11/15 15:04	14808-79-8	

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

Sample: 27003/LEADWOOD UPSTREAM	Lab ID: 60°	187371002 Collected	d: 02/03/1	5 08:56	Received: 02/	04/15 08:15 Ma	atrix: Water	
		Report						
Parameters	Results	Units Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Me	thod: EPA 200.7 Prepa	ration Meth	nod: EP	A 200.7			
Cadmium	ND ug/L	5.0	0.56	1	02/04/15 16:00	02/05/15 11:31	7440-43-9	
Calcium	39200 ug/L	100	7.8	1	02/04/15 16:00	02/05/15 11:31	7440-70-2	
Lead	ND ug/L	5.0	2.2	1	02/04/15 16:00	02/05/15 11:31	7439-92-1	
Magnesium	24900 ug/L	50.0	17.0	1	02/04/15 16:00	02/05/15 11:31	7439-95-4	
Total Hardness by 2340B	201000 ug/L	500		1	02/04/15 16:00	02/05/15 11:31		
Zinc	ND ug/L	50.0	12.5	1	02/04/15 16:00	02/05/15 11:31	7440-66-6	
200.7 Metals, Dissolved (LF)	Analytical Me	thod: EPA 200.7 Prepa	ration Meth	nod: EP	A 200.7			
Cadmium, Dissolved	ND ug/L	5.0	0.56	1	02/10/15 12:00	02/11/15 11:42	7440-43-9	
Lead, Dissolved	ND ug/L	5.0	2.2	1	02/10/15 12:00	02/11/15 11:42	7439-92-1	
Zinc, Dissolved	ND ug/L	50.0	12.5	1	02/10/15 12:00	02/11/15 11:42	7440-66-6	
2540D Total Suspended Solids	Analytical Me	thod: SM 2540D						
Total Suspended Solids	ND mg/L	5.0	5.0	1		02/05/15 14:10		
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300.0						
Sulfate	18.6 mg/L	1.0	0.50	1		02/11/15 16:18	14808-79-8	М1

Project:

NPDES (Leadwood)

Pace Project No.: 60187371

Date: 02/12/2015 11:36 AM

Lab ID:	60187371003	Collecte	d: 02/03/1	5 08:36	Received: 02/	04/15 08:15 Ma	atrix: Water	
		Report						
Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytica	I Method: EPA 2	200.7 Prepa	ration Meth	od: EP	A 200.7			
6.0	ug/L	5.0	0.56	1	02/04/15 16:00	02/05/15 11:37	7440-43-9	
10.0 t	ug/L	5.0	2.2	1	02/04/15 16:00	02/05/15 11:37	7439-92-1	
5780 (ug/L	50.0	12.5	1	02/04/15 16:00	02/05/15 11:37	7440-66-6	
Analytica	I Method: SM 2	540D						
8.0 r	mg/L	5.0	5.0	1		02/05/15 14:10		
Analytica	l Method: SM 2	540F						
ND r	mL/L/hr	0.20	0.20	1		02/04/15 14:40		
Analytica	l Method: EPA 3	300.0						
531 r	mg/L	50.0	25.0	50		02/11/15 16:33	14808-79-8	
	Analytica Analytica Analytica Analytica Analytica Analytica	Analytical Method: EPA 2 6.0 ug/L 10.0 ug/L 5780 ug/L Analytical Method: SM 29 8.0 mg/L Analytical Method: SM 29 ND mL/L/hr	Results Units Report Limit Analytical Method: EPA 200.7 Preparence 5.0 6.0 ug/L 5.0 10.0 ug/L 5.0 5780 ug/L 50.0 Analytical Method: SM 2540D 8.0 mg/L Analytical Method: SM 2540F ND mL/L/hr ND mL/L/hr 0.20 Analytical Method: EPA 300.0	Results Units Report Limit MDL Analytical Method: EPA 200.7 Preparation Method: SD ug/L 5.0 0.56 10.0 ug/L 5.0 2.2 5780 ug/L 50.0 12.5 Analytical Method: SM 2540D 8.0 mg/L 5.0 5.0 Analytical Method: SM 2540F ND mL/L/hr 0.20 0.20 Analytical Method: EPA 300.0 Analytical Method: EPA 300.0 0.20	Results Units Report Limit MDL DF Analytical Method: EPA 200.7 Preparation Method: EPA 6.0 ug/L 5.0 0.56 1 10.0 ug/L 5.0 2.2 1 5780 ug/L 50.0 12.5 1 Analytical Method: SM 2540D 8.0 mg/L 5.0 5.0 1 Analytical Method: SM 2540F ND mL/L/hr 0.20 0.20 1 Analytical Method: EPA 300.0 4 0.20 0.20 1	Results Units Report Limit MDL DF Prepared Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 6.0 ug/L 5.0 0.56 1 02/04/15 16:00 10.0 ug/L 5.0 2.2 1 02/04/15 16:00 5780 ug/L 50.0 12.5 1 02/04/15 16:00 Analytical Method: SM 2540D 8.0 mg/L 5.0 5.0 1 Analytical Method: SM 2540F ND mL/L/hr 0.20 0.20 1 Analytical Method: EPA 300.0	Results Units Report Limit MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 6.0 ug/L 5.0 0.56 1 02/04/15 16:00 02/05/15 11:37 10.0 ug/L 5.0 2.2 1 02/04/15 16:00 02/05/15 11:37 5780 ug/L 50.0 12.5 1 02/04/15 16:00 02/05/15 11:37 Analytical Method: SM 2540D 8.0 mg/L 5.0 5.0 1 02/05/15 14:10 Analytical Method: SM 2540F ND mL/L/hr 0.20 0.20 1 02/04/15 14:40 Analytical Method: EPA 300.0 EPA 300.0 0.20 1 02/04/15 14:40	Results Units Report Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 6.0 ug/L 5.0 0.56 1 02/04/15 16:00 02/05/15 11:37 7440-43-9 10.0 ug/L 5.0 2.2 1 02/04/15 16:00 02/05/15 11:37 7439-92-1 5780 ug/L 50.0 12.5 1 02/04/15 16:00 02/05/15 11:37 7440-66-6 Analytical Method: SM 2540D 8.0 mg/L 5.0 5.0 1 02/05/15 14:10 Analytical Method: SM 2540F ND mL/L/hr 0.20 0.20 1 02/04/15 14:40 Analytical Method: EPA 300.0 Analytical Method: EPA 300.0 0.20 0.20 1 02/04/15 14:40

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

QC Batch:

MPRP/30693

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Associated Lab Samples:

60187371001, 60187371002, 60187371003

METHOD BLANK: 1516196

Matrix: Water

Associated Lab Samples: 60187371001, 60187371002, 60187371003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cadmium	ug/L	ND	5.0	02/05/15 11:03	
Calcium	ug/L	ND	100	02/05/15 11:03	
Lead	ug/L	ND	5.0	02/05/15 11:03	
Magnesium	ug/L	ND	50.0	02/05/15 11:03	
Total Hardness by 2340B	ug/L	ND	500	02/05/15 11:03	
Zinc	ug/L	ND	50.0	02/05/15 11:03	

LABORATORY CONTROL SAMI	PLE: 1516197					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L	1000	1030	103	85-115	
Calcium	ug/L	10000	9620	96	85-115	
Lead	ug/L	1000	1070	107	85-115	
Magnesium	ug/L	10000	9670	97	85-11 5	
Total Hardness by 2340B	ug/L		63800			
Zinc	ug/L	1000	1000	100	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 15161	98		1516199					_		
Parameter	Units	60187370001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium	ug/L	ND	1000	1000	1010	1040	101	104	70-130	3	20	
Calcium	ug/L	28200	10000	10000	37100	37300	90	92	70-130	1	20	
Lead	ug/L	ND	1000	1000	963	990	96	99	70-130	3	20	
Magnesium	ug/L	4630	10000	10000	13400	13700	88	91	70-130	2	20	
Total Hardness by 2340B	ug/L	89400			148000	150000				1		
Zinc	ug/L	ND	1000	1000	991	1020	96	98	70-130	3	20	

MATRIX SPIKE SAMPLE:	1516200						
Parameter	Units	60187289001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Cadmium	ug/L	ND	1000	1010	101	70-130	
Calcium	ug/L	27300	10000	36600	93	70-130	
Lead	ug/L	ND	1000	1040	104	70-130	
Magnesium	ug/L	2540	10000	12000	95	70-130	
Total Hardness by 2340B	ug/L	78600		141000			
Zinc	ug/L	92.2	1000	1060	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

QC Batch:

MPRP/30735

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Dissolved

Associated Lab Samples:

60187371001, 60187371002

METHOD BLANK: 1518690

Matrix: Water

Date: 02/12/2015 11:36 AM

Associated Lab Samples: 60187371001, 60187371002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Cadmium, Dissolved	ug/L	ND	5.0	02/11/15 11:35	
Lead, Dissolved	ug/L	ND	5.0	02/11/15 11:35	
Zinc, Dissolved	ug/L	ND	50.0	02/11/15 11:35	

LABORATORY CONTROL SAMPLE: 1518691

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cadmium, Dissolved	 ug/L	1000	1010	101	85-115	
Lead, Dissolved	ug/L	1000	1090	109	85-115	
Zinc, Dissolved	ug/L	1000	1030	103	85-115	

******	A 444TOW/ OBW/F	D. 101 10 ATE
MATRIX SPIKE	& MATRIX SPIKE	DUPLICATE:

1518692

1518693

Parameter	Units	60187371002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium, Dissolved	ug/L	ND	1000	1000	1020	1030	102	103	70-130	0	20	
Lead, Dissolved	ug/L	ND	1000	1000	1090	1090	109	109	70-130	0	20	
Zinc, Dissolved	ug/L	ND	1000	1000	1040	1030	104	103	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

NPDES (Leadwood)

Pace Project No.:

60187371

QC Batch:

WET/52869

Analysis Method:

SM 2540D

QC Batch Method:

SM 2540D

Analysis Description:

2540D Total Suspended Solids

Associated Lab Samples:

60187371001, 60187371002, 60187371003

METHOD BLANK: 1516627

Matrix: Water

Associated Lab Samples:

60187371001, 60187371002, 60187371003

Units

Units

Blank Result Reporting

Parameter

Units

Limit

Analyzed

Qualifiers

Total Suspended Solids

mg/L

ND

5.0 02/05/15 14:08

SAMPLE DUPLICATE: 1516629

60187368001

Dup Result

RPD

Max RPD

Qualifiers

Total Suspended Solids

mg/L

Result 60.0

61.0

2

SAMPLE DUPLICATE: 1516630

Parameter

Parameter

60187362002 Result

Dup Result

Max RPD **RPD**

Qualifiers

Total Suspended Solids

mg/L

ND

5.0

10

10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

NPDES (Leadwood)

Pace Project No.:

.: 60187371

QC Batch:

WETA/32812

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0 Analysis Description:

300.0 IC Anions

Associated Lab Samples:

60187371001, 60187371002, 60187371003

Units

LABORATORY CONTROL SAMPLE:

Parameter

1519640

Spike Conc. LCS Result LCS % Rec % Rec Limits

Qualifiers

Sulfate

mg/L

5

5.0

99 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

NPDES (Leadwood)

Pace Project No.: 60187371

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 02/12/2015 11:36 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NPDES (Leadwood)

Pace Project No.: 60187371

Date: 02/12/2015 11:36 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60187371001	27002/LEADWOOD DOWNSTREAM	EPA 200.7	MPRP/30693	EPA 200.7	ICP/22916
60187371002	27003/LEADWOOD UPSTREAM	EPA 200.7	MPRP/30693	EPA 200.7	ICP/22916
60187371003	27005/LEADWOOD 002	EPA 200.7	MPRP/30693	EPA 200.7	ICP/22916
60187371001	27002/LEADWOOD DOWNSTREAM	EPA 200.7	MPRP/30735	EPA 200.7	ICP/22939
60187371002	27003/LEADWOOD UPSTREAM	EPA 200.7	MPRP/30735	EPA 200.7	ICP/22939
60187371001	27002/LEADWOOD DOWNSTREAM	SM 2540D	WET/52869		
60187371002	27003/LEADWOOD UPSTREAM	SM 2540D	WET/52869		
60187371003	27005/LEADWOOD 002	SM 2540D	WET/52869		
60187371003	27005/LEADWOOD 002	SM 2540F	WET/52847		
60187371001	27002/LEADWOOD DOWNSTREAM	EPA 300.0	WETA/32812		
60187371002	27003/LEADWOOD UPSTREAM	EPA 300.0	WETA/32812		
60187371003	27005/LEADWOOD 002	EPA 300.0	WETA/32812		

Sample Condition Upon Receipt

Client Name: Dec Kun					Optional
Courier: Fed Exp UPS USPS Client	☐ Commercial ☐	Pace □	Other 🗆		Proj Due Date:
Tracking #: <u>7728 030 4 <i>6</i>744</u>	Pace Shipping La	abel Used?	Yes □ I	Ng.E	Proj Name:
Custody Seal on Cooler/Box Present: Yes	No □ Seals intac	ct: Yes	No □		
Packing Material: Bubble Areap □ Bubble	Bags 🗗 💢 🗜	oam 🗆	None 🗆	Other 2	r zac
Thermometer Used: T-239 / T-194	Type of Ice: We	,	one □ Sam	ples received	on ice, cooling process has begun.
Cooler Temperature: 2.7		(circle one)		Date and initions	tials of person examining
Temperature should be above freezing to 6°C		T		Contonia.	\$\$ 9771
Chain of Custody present:	ÆlYes □No □	□N/A 1.			
Chain of Custody filled out:	ØYes □No □	□N/A 2.			
Chain of Custody relinquished:	ØYes □No □	□N/A 3.		·	
Sampler name & signature on COC:	Øyes □No □	□N/A 4.			
Samples arrived within holding time:	∕☐Yes ☐No ☐	JN/A 5.			
Short Hold Time analyses (<72hr):	ÆYes □No [□n/A 6. S	55 04		
Rush Turn Around Time requested:	□Yes 121No □	□N/A 7.	<i></i>		
Sufficient volume:	ÆYes □No □	□N/A 8.			
Correct containers used:	ØYes □No □	□N/A			
Pace containers used:	ØYes □No □	□N/A 19.			
Containers intact:	ØYes □No □	⊐N/A 10.			
Unpreserved 5035A soils frozen w/in 48hrs?	STATE ONO D	2N/A 11.			
Filtered volume received for dissolved tests?	□Yes □No ∫	ZŃ/A 12.			
Sample labels match COC:	ZiYes □No [⊃n/a			
Includes date/time/ID/analyses	unter	13.			
All containers needing preservation have/been checked	PYes □No [⊐n/a			
All containers needing preservation are found to be in compliance with EPA recommendation.	ØYes □No [□N/A 14.			
Exceptions: VOA, coliform TOC, O&G, WI-DRO (water Phenolics	r). Øyes □No	Initial compl			ot # of added eservative
Trip Blank present:	□Yes □No ∫				
Pace Trip Blank lot # (if purchased):	-	15.			
Headspace in VOA vials (>6mm):	□Yes □No J	ZN/A			
		16.			
Project sampled in USDA Regulated Area:	□Yes □No -	ŹN/A 17. Li	ist State:		
Client Notification/ Resolution: Co	py COC to Client?	Y / N	Field Data	Required?	Y / N
Person Contacted	Date/Time:				
Comments/ Resolution:					
<u> </u>					
1000000			2/4/15		
Project Manager Review.		Date:			

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section	n A d Client Information:	Sectio		oject Infor	rmation:			ction		matio															
P		Report		Amy S				oice in		-	ny Sa	ande	are					7		1	_			7	
Compar		Copy To		Arriy S	allueis			mpany	-	more becoming			and the latest terminal to the latest terminal t	in Co	omp	anv		REGULATORY AGE	ENCY	AND RESERVED TO	Page:	1	of	4	
-	PO Box 500							dress:									6556	B NPDES T G	ROUND WA	TER					
Email To	asanders@doerun.com	Purcha	se Ord	der No.:				e Quo									-		CRA						
	addings (addings)					1 0		erence te Proje									-			,,,,,,,,,	COC#: 1	1472			7.
Phone:	(573) 689-4535 Fax: (573) 244-8179	Project	Name	: NF	PDES (Lea	awooa)		nager											мо				6	0187	7371
Reques	ted Due Date/TAT: 5 To 7 Days	Project	Numb	er.			Pac	e Prof	ile #:									STATE:			2 0700				•
									_	_							_	Reques	ted Analy	sis Filtere	a (T/N)			-	
	Section C			C.	OLLECTE	DATE/T	IME		1	ı	Rot	ttles	/Pn	200	vetiv	201	N	NNNNNN	NNN	NNN	NN	N N		,	
	Required Sample Information Valid Matrix Code:	i i	A P		OLLEGIEL	TOATE	IIVIC	-	ı	\vdash	DOL	1003	1	7	T	T	333			SEMERICAL SECTION OF THE PERSON OF THE PERSO	ACTION 1	53600			
	MATRIX CO	DE 8	8	COMBC	OSITE START	COMPOS		3	ı				6	5		l l	ਂ	*See Additio	nal Com	ments B	elow		9	2	
	WASTE WATER WASTE SOIL/SOLID SI	v 8	اۃ	COM	DOILE GIFTE	GR	AB	Ě	I			1	E SO	2			20						8	- 1	
		Ne.	(G=GRAB C=COMP)		1			COLLECTION	3	ъ	0		1	0	-	1-1	9						3	1	
		see	Ö					8	IZ	2	18		9	00	니오	히	i i						je		
	SAMPLE ID	- 1						¥	Ę	se	Se	9	10	Plastic H ₂ SO,	Amber HCL	2	Amber Glass H ₂ SO ₄						SEMO Lab Project No./ Lab		
	(A-Z, 0-9 / ,-)	١ĕ	l W					TEMP	ုဗ	ğ	10	Unpreserved	일본	ast	E	8	ĕ	Anal	veie '	Test	1		2		
	Sample IDs MUST BE UNIQUE	ő							능	Š	5	ē :	Ž A	ā	12	7	₹	, , , , , , , , , , , , , , , , , , , ,	Join		*		8	- 1	
*		- 1 €	121					15	#	뒽	뒽	5	티	탈	10	E	팀						5	,	
TEM		MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME (Military)	SAMPLE	Sa Sa	250 mL Unpreserved	500 mL Unpreserved	- 3	250 mL Nitric	250	1000 mL	250 mL ZnAc/NaOH	200						· '		
	1,0		-	(mm/dd/yy	(Military)	(mm/dd/yy)	OF II	7,	占	23	145	-	1	100	+-	101		D-D, PB-D, ZN-D, HARD, S	O4 CD-T PE	LT TSS_T 7	N-T		dwood D	ownstres	001
1	27002 RON BPSN BPZU	- Iw	G			02/03/15	CHIL	-14	7	1	1	+	+	+	+	+	一 <u>厂</u>	, p-0, Pb-0, 21-0, 11A10, 0	04, 00-1,11	71,1001,2					/
2		-	G		-	02/03/15	W54	. 2	3	100	1	+	1	+	+	\vdash	CI	D-D, PB-D, ZN-D, HARD, S	O4. CD-T. PE	3-T, TSS-T, 2	N-T		radwood l	Upstream	20 %
3	27003	- 1	13			02/03/13	234	P	2	4	1		+	+	+	\vdash	+								
4	2		G			02/03/15		+	3	1		1	+	+	+		- Cre	T-00-T00-00-T-00-T	ZN.T				Leadwood	-	ari
6		- 1"	+		+	02.00.10		+	t	t	\forall	1	+	\top	1	\Box	\top								
7	27005 \$ \$8610	w	G		1	02/03/15	0236	, 27	3	1	\forall	7	1	+	1	\Box	50	04, SS, TSS, CD-T, PB-T, 2	ZN-T				Leadwood	002	200
8	¥ piiv	- -	+					7	T	T	\Box		1	T											
9		\dashv	+					\top	T	Т	\Box				T										
10			\top					T	Т	Т	П			T	T		\Box								
11		\top	\top					Т	Т	T			T	T	T										
12			\Box					T																	
13		\top	П																						
14																									
15																									
16								\perp	L						_		_								
17								_	上	上			_	_			_								
18								_	┺	┺		\vdash	_	_	_	\square	+						-		
19								4	┺	┺		\vdash	_	_	_	\vdash	+						<u> </u>		
20		_	\perp			_		+	1	+	\vdash	\vdash	+	+	+	H	+						├		
21		_	1					+	+	+	\vdash	\vdash	+	+	+	\vdash	+						 		
22		_	\perp					+	+	+	+	\vdash	+	+	+	H	-						-		
23		_	+				-	+	+	+	+	H	+	+	+	H	+						 		
24		+	+-			-		+	╁	+	+	H	+	+	+	H	+				***************************************		1		
25		+	+	-	-	-	-	+	╁	┿	+	-	+	+	+	H	+						\vdash		
26		+	+		-	-	 	+	+	+	+	\vdash	+	+	+	+	+						†		
27		+	+	_	+	-	 	+	+	+	+	H	+	+	+	\vdash	+								
28		+	1	_	+	-	 	+	+	+	+	H	+	+	+	H	+						1		
29		-1	+	-		1	 	+	+	+	\vdash	H	+	+	+	+	+						1		
30	L COMMENTS	1	1	DEI ING	UISHED BY	AFFY IATH	ON		+	DAT	TE.		TIME	+		ACC	EPTF	D BY / AFFILIATION	DATE	TRAE	SA	MPLE	CONDITIO	ONS	
AUDITI	ONAL COMMENTS	/	-			-		_		2/3/		OM	Asimary)	+			wee			08/5	27			4	
-			11	nd		4pg			+	2101	10	1		+	M	4 8	1	4 / 4	1				1		
-						11			T								-6								
				S	AMPLER N	AME AND	SIGNATI	URE	_												ρ	_	8	- jo	
				Г	PRI	NT Name of	SAMPL	ER: /		1		- h -	Alta		0						.⊆	US ui Ho	Dev Y	Custody siled Coolk (Y/N)	
				-				+		+	All	nber	NID	4	+			DATE Signed			dw	H	909	S ale C	

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 09, 2015

Amy Sanders The Doe Run Company P. O. Box 500 Viburnum, MO 65566

RE: Project: NPDES (LEADWOOD)
Pace Project No.: 60188624

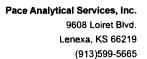
Dear Amy Sanders:

Enclosed are the analytical results for sample(s) received by the laboratory on February 26, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church


jamie.church@pacelabs.com

Project Manager

from Church

Enclosures

CERTIFICATIONS

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 lowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE SUMMARY

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60188624001	28201 / LEADWOOD 001	Water	02/25/15 07:41	02/26/15 08:55

(913)599-5665

SAMPLE ANALYTE COUNT

Project:

NPDES (LEADWOOD)

Pace Project No.: 60188624

				Analytes	
Lab ID	Sample ID	Method	Analysts	Reported	Laboratory
60188624001	28201 / LEADWOOD 001	EPA 200.7	NDJ	3	PASI-K
		SM 2540D	ESM	1	PASI-K
		SM 2540F	ESM	1	PASI-K
		EPA 300.0	OL	1	PASI-K

Project:

NPDES (LEADWOOD)

Pace Project No.:

Date: 03/09/2015 08:55 AM

60188624

Sample: 28201 / LEADWOOD 001	Lab ID:	60188624001	Collecte	d: 02/25/15	07:41	Received: 02/	26/15 08:55 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Cadmium	1.6J	ug/L	5.0	0.56	1	02/27/15 10:00	02/27/15 15:15	7440-43-9	
Lead	6.8	ug/L	5.0	2.2	1	02/27/15 10:00	02/27/15 15:15	7439-92-1	
Zinc	352	ug/L	50.0	12.5	1	02/27/15 10:00	02/27/15 15:15	7440-66-6	
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	ND	mg/L	5.0	5.0	1		03/02/15 16:16		
2540F Total Settleable Solids	Analytical	Method: SM 25	540F						
Total Settleable Solids	ND	mL/L/hr	0.20	0.20	1		02/26/15 15:00		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Sulfate	175	mg/L	20.0	10.0	20		02/28/15 14:06	14808-79-8	

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

QC Batch:

MPRP/30902

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Associated Lab Samples:

60188624001

METHOD BLANK: 1526370

Matrix: Water

Associated Lab Samples:

60188624001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Cadmium	ug/L	ND	5.0	02/27/15 15:11	
Lead	ug/L	ND	5.0	02/27/15 15:11	
Zinc	ug/L	ND	50.0	02/27/15 15:11	

LABORATORY CONTROL SAMPLE:

1526371

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cadmium	ug/L	1000	1010	101	85-115	
Lead	ug/L	1000	1060	106	85-115	
Zinc	ug/L	1000	1010	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1526372 1526373												
Parameter	Units	60188624001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium	ug/L	1.6J	1000	1000	1040	1010	104	101	70-130	3	20	
Lead	ug/L	6.8	1000	1000	1080	1050	107	105	70-130	2	20	
Zinc	ug/L	352	1000	1000	1330	1300	98	95	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

QC Batch: QC Batch Method: WET/53276

SM 2540D

Analysis Method:

SM 2540D

Analysis Description:

2540D Total Suspended Solids

Associated Lab Samples:

60188624001

METHOD BLANK: 1527433

Parameter

Parameter

Matrix: Water

Associated Lab Samples:

60188624001

Blank Result Reporting

Limit

Analyzed Qualifiers

Total Suspended Solids

Units mg/L

Units

ND

5.0 03/02/15 16:11

SAMPLE DUPLICATE: 1527434

60188548003 Result

Dup Result

RPD

Max RPD

Qualifiers

Total Suspended Solids

mg/L

9.0

10 D6

SAMPLE DUPLICATE: 1527435

Parameter

60188613001 Units

Result

ND

Dup Result RPD

12

Max RPD

Qualifiers

Total Suspended Solids

Date: 03/09/2015 08:55 AM

mg/L

ND

8.0

10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

QC Batch:

WETA/33042

QC Batch Method:

EPA 300.0

Analysis Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

60188624001

METHOD BLANK: 1527198

Matrix: Water

ND

Associated Lab Samples:

60188624001

Blank Result Reporting

Parameter

Units

mg/L

Limit

Analyzed

1.0 02/28/15 12:52

Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter

1527199

Spike

LCS

LCS

% Rec

Sulfate

Sulfate

Units mg/L

60188597001

Result

Conc. 5 Result

4.8

MS

Result

611

% Rec

Limits

Qualifiers

Parameter

MATRIX SPIKE SAMPLE:

Parameter

1527200

138

MS MSD

500

Spike

Conc.

1527201

500

Spike

Conc.

MSD

Result

MS % Rec

MSD % Rec

90-110

% Rec Limits

80-120

Max RPD RPD

> 0 15

Sulfate

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Units

mg/L

1527202 60188617001 Units Result

Spike

MS

613

MS % Rec

95

% Rec

Qual

Sulfate

mg/L

266

Conc.

250

Result 521 102

Limits

80-120

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project:

NPDES (LEADWOOD)

Pace Project No.:

60188624

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 03/09/2015 08:55 AM

D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

NPDES (LEADWOOD)

Pace Project No.: 60188624

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60188624001	28201 / LEADWOOD 001	EPA 200.7	MPRP/30902	EPA 200.7	ICP/23040
60188624001	28201 / LEADWOOD 001	SM 2540D	WET/53276		
60188624001	28201 / LEADWOOD 001	SM 2540F	WET/53238		
60188624001	28201 / LEADWOOD 001	EPA 300.0	WETA/33042		

Sample Condition Upon Receipt

Client Name: Doe Run					Optional
Courier: Fed Ex 🗗 UPS 🗆 USPS 🗆 Client 🗆	Commercial E	Pace	□ Other □		Proj Due Date:
Tracking #: 7724 8724 8761	Pace Shipping L	abel Use	d? Yes □ I	No 🗆	Proj Name:
Custody Seal on Cooler/Box Present: Yes 🗱 No	□ Seals inta	ct: Yes	R No □		
Packing Material: Bubble Wrap □ Bubble Ba	igs 🗆 💮 F	Foam □	None □	Other	Kizeic
Thermometer Used: (7-239) T-194	ype of Ice: We	Blue	None Sam	ples received	on ice, cooling process has begun.
Cooler Temperature: 0.7		(circle or	e)	Date and in	itials of person examining
Temperature should be above freezing to 6°C				contents: _	JO 2 2 2 C
Chain of Custody present:	EYes □No I	□N/A 1.			
Chain of Custody filled out:	¥Yes □No □	□N/A 2.			
Chain of Custody relinquished:	ÆYes □No	□N/A 3.			
Sampler name & signature on COC:	Maryes □No	DN/A 4.			
Samples arrived within holding time:	MYes □No	□N/A 5.			
Short Hold Time analyses (<72hr):	☑Yes □No	□N/A 6.	Sett Solido		
Rush Turn Around Time requested:	□Yes ⊠No	□N/A 7.			
Sufficient volume:	ØYes □No	□N/A 8.			
Correct containers used:	™ Yes □No	□N/A			
Pace containers used:	¶ Yes □ No	□N/A 9.			
Containers intact:	Maryes □ No	□N/A 10),		
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No	11 N/A			
Filtered volume received for dissolved tests?	□Yes □No	10N/A 12			
Sample labels match COC:	ØYes □No	□N/A			
Includes date/time/ID/analyses Matrix:	WT	13	B		
All containers needing preservation have been checked.	Ø Yes □No	□N/A B	PSN INITIAL PH	6.0 added 2.	5ml Final pH 2.0
All containers needing preservation are found to be in compliance with EPA recommendation.	Ø Yes □No	□N/A 14	200		
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water).	□Yes ŪNo	In	tial when		_ot # of added 12989~2-7
Phenolics Trip Blank present:	□Yes □No		mpleted		preservative
Pace Trip Blank lot # (if purchased):		11	5.		
Headspace in VOA vials (>6mm):	□Yes □No				
		10	3		
Project sampled in USDA Regulated Area:	□Yes □No		7. List State:		
	COC to Client?	Y / N		a Required?	Y / N
Person Contacted D	ate/Time:				
Comments/ Resolution:					
-					7/-01-2
- Chow Church-			2/26/15	-	
Project Manager Review:		Da	ite:		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT: All relevant fields must be completed accurately.

TME	
MAL	

ectic		Sectio		2			Sect																	
lequir		_		oject Informa			The second second	****	-	nation		-	_		_	_	-	7						
ompa	THE DOE IVER COMPANY	Report		Amy San	iders		Atten	_	_		-	nde	_	- 0-	0000	17011		REGULATORY AG	ENCY		Page	1	of	1
ddres	ss: PO Box 500	Сору Т	0:				Addn		y Ivai					n Co bumi			855	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	ROUND W	ATER	4		-	-
	-	Duceha	- Or	der No :			Pace		10	FU	BUX	. 300	. Att	POLLU	21116	INIO	900		CRA					
mail 1	asanders(d)doerdin com	_		- 60			Rafen									_	_	001	.0101	mm	COC#:	1585	,	110
hone	(573) 689-4535 Fax: (573) 244-8179	Project	Name	NPC	ES (Lea	dwood)	Page Mana	ger									_		мо				Aid	8802
eque	ested Due Date/TAT: 5 To 7 Days	Project	Numb	oer:			Pace	Profi	ile#	-					_			STATE:	neted Ans	lysis Filte	rod (VI	M	MAI	
		-	_					-			10					_	-	- Kerle	esteu Atia	19919 1 1102	00 (11	1		
	Section C Required Sample Information Valid Matrix Codes			COL	LECTE	DATE/TI	ME	1			Bot	tles	/ Pre	serv	ativ	es	N	INNNNNN	NNN	NNN	N N	N N		S
	Required Sample Information Valid Matrix Codes MATRIX COD		C=COMP)				5000	l_	L				Τ.			T	. 8							N. C
	WATER WI WASTE WATER WM	<u>E</u>	Ä	COMPOST	TE START	COMPOSIT		[ē	ш				H,SO,			8	2	*See Additio	nal Com	ments B	Blow			La
	SOE/SOUD 5L	valid c	8						8	1 1			£	-		3	E							b P
		8 9 A A	(G=GRAB					등	CONTAINERS	è	mt Unpreserved		888	SO	호	핅	388							SEMO Lab Project No./ Lab I.D.
	SAMPLE ID							Ę	Į≨.	Ser	Ser	8	0	Ĭ,	盲	Na	2							5
	(A-Z, 0-9 / ,-)	CODE	ա					Į	ĺĝ	E	E .	2 5	2 8	stic	윝	P.		Anal	veic	Teet	1			2
	Sample IDs MUST BE UNIQUE	ြ	1					1	R	5	5	Sel M	2 2	ă	Z	Z	2	Julia	yara				N.	
₹2		<u>`</u>	믵					빝	=	팀	팀	5 7		Ę	E 0	팀	티							Ē
ITEM		MATRIX	SAMPLE TYPE	DATE (mm/dd/yy)	TIME (Military)	DATE (mm/dd/yy)	TIME (Military)	SAMPLE TEMP AT COLLECTION	Total	250 mt. Unpreserved	200	1 L Unpreserved	250 mL Ambe	250 mL Plastic H ₂ SO ₄	1000 mL Amber HCL	250 mL ZnAc/NaOH	8		dalamin da					
	28201 DPIN BYZY DF3N		N G	(minosy))	(Minister))	02/25/15	MI		3		1	1	1					804, SS. TSS, CD-T, PB-T,	ZN-T				Leadwo	ood 001 🎉
2	Leger Di to 1.0.1 Di soo	-	-				-		I								I					-		
3																								
4							William Class		L			_	1	1			1					_		
5								1	1	Н	-	-	+	-		-	+			-				
6		-	-					-	+	H	-	+	+	+	-		+		-		Varya -			
7		-	+					\vdash	1	H	-		+	+		-	+							
8		+	+		-			t	+		1		+	+										
9		+	1					T	T															
11		\top															100	•						
12							6.55		L			1					4							
13		1						1	1	\square		_	4-	-	-				- 17-					
14		\perp	3 2 -					-	-	\blacksquare	1	+	+	1		-	+							
15		+	+	_		-		+	+	H		+	+	+										
16		-	-					+	+			\dashv	+	+									MALE SH	
17		-						十	T	П			\top	1										
19														I										
20							100	L		\Box	42			1	-			-					_	
21								+	+	H	Н		-		-		-							
22		_			Ce			+	+	+			+	-			+							
23		+	-					+	+	+	H		+	7		Н	\top							
24		-	-			7			1	\top						\Box								
26 26								T	I					7										
27							ties and															The state		
28								T	1				_		-		-							
29		4	1	-				+	-	-			-	+	-		-							
30			1	-	antio hu	AFFERIATION	a.	1	+	DATI		-	aue.		1	ACCE	-L	ED BY / AFFILIATION	DATE	Take Dalibary)	9 7	SAMPLE	CONDI	TIONS
ADDI	TIONAL COMMENTS	-1	0/1	A.C.		AFFILIATIO				2/25/	-	ESA	(mary)	-	-	A second			2/26	0855			У	У
		1	/4	ATM		Ly	0	_	1	220		144	, 🕠	1/	17		-5	7-3-	-					
		-				-				VI.				10				200					-	
				SA	MPLER N	AME AND S	IGNATU	RE	_	L. C.	MO MAN	all sections		_	-						ρ	2	(N/N)	≥ g
					PRI	NT Name of	SAMPLE	R:/		1	Am	ber	Nipr	nec							.E	US UI	Syl	ustody ed Cook

Monthly Ambient Air Monitoring Report

The Doe Run Company
Old Lead Belt Sites:
Federal, Rivermines, National, and Leadwood

January-2015

SUITE 300 1801 PARK 270 DRIVE ST. LOUIS, MO 63146

Federal Site

Sample Results for January-2015

						reatment
		Ballfields)		iver#4		ant
O a sala Dat	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
1/2/15	6	0.000	9	0.006	2	0.007
1/5/15	17	0.019	18	0.006	9	0.006
1/6/15	20	0.007	13	0.006	22	0.019
1/7/15	18	0.006	12	0.006	17	0.006
1/8/15	33	0.052	17	0.006	19	0.026
1/9/15	20	0.006	16	0.006	23	0.065
1/12/15	18	0.007	18	0.006	21	0.013
1/13/15	20	0.019	29	0.006	17	0.013
1/14/15	14	0.007	14	0.006	15	0.032
1/15/15	16	0.020	12	0.013	9	0.020
1/16/15	12	0.007	11	0.007	10	0.020
1/19/15	26	0.020	26	0.013	26	0.013
1/20/15	15	0.014	7	0.013	9	0.020
1/21/15	22	0.013	8	0.006	15	0.086
1/22/15	21	0.013	14	0.006	17	0.013
1/23/15	10	0.013	9	0.006	12	0.039
1/26/15	7	0.007	4	0.007	5	0.007
1/27/15	9	0.007	9	0.006	6	0.007
1/28/15	41	0.060	10	0.013	18	0.073
1/30/15	10	0.007	15	0.006	7	0.006
		i				

Monthly Avg. TSP	18	14	14
Monthly Avg. Pb	0.015	0.008	0.025
Dec-14	0.009	0.005	0.009
Nov-14	0.016	0.006	0.017
Rolling 3-Month	0.013	0.006	0.017

Three month rolling average must be less than 0.15 ug/m3

NOTES:

		ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
1/6/15	18	0.006
1/8/15	16	0.006
1/13/15	29	0.006
1/15/15	14	0.013
1/20/15	14	0.013
1/22/15	13	0.007
1/27/15	6	0.007

Rivermines

Sample Results for January-2015

Cample Results for		ver #4	Rivermines	South #1	Rivermine	s North #2		es East #3
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
1/2/15	9	0.006	invalid	invalid	4	0.007	2	0.007
1/5/15	18	0.006	23	0.044	12	0.013	9	0.006
1/6/15	13	0.006	28	0.089	15	0.007	22	0.019
1/7/15	12	0.006	23	0.031	1	0.006	17	0.006
1/8/15	17	0.006	24	0.019	21	0.130	19	0.026
1/9/15	16	0.006	21	0.006	14	0.032	23	0.065
1/12/15	18	0.006	24	0.122	19	0.007	21	0.013
1/13/15	29	0.006	27	0.013	20	0.006	17	0.013
1/14/15	14	0.006	24	0.019	12	0.020	15	0.032
1/15/15	12	0.013	10	0.000	11	0.027	9	0.020
1/16/15	11	0.007	15	0.006	11	0.047	10	0.020
1/19/15	26	0.013	30	0.039	22	0.007	26	0.013
1/20/15	7	0.013	12	0.020	10	0.013	9	0.020
1/21/15	8	0.006	34	0.058	13	0.007	15	0.086
1/22/15	14	0.006	invalid	invalid	21	0.007	17	0.013
1/23/15	9	0.006	invalid	invalid	8	0.000	12	0.039
1/26/15	4	0.007	5	0.007	3	0.007	5	0.007
1/27/15	9	0.006	13	0.006	5	0.007	6	0.007
1/28/15	10	0.013	invalid	invalid	21	0.142	18	0.073
1/30/15	15	0.006	12	0.006	8	0.007	7	0.006

Monthly Avg. TSP	14	20	12	14
Monthly Avg. Pb	0.008	0.030	0.025	0.025
Dec-14	0.005	0.023	0.006	0.009
Oct-14	0.008	0.058	0.030	0.034
Rolling 3-Month	0.007	0.037	0.020	0.023

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Rivermines South: 1/2, 1/22, 1/23, >25hr run time

1/27, <23hr run time, main breaker on pole tripped

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
1/6/15	18	0.006
1/8/15	16	0.006
1/13/15	29	0.006
1/15/15	14	0.013
1/20/15	14	0.013
1/22/15	13	0.007
1/27/15	6	0.007

National Site

Sample Results for January-2015

	Di- Di		0	-l. #1	Soccer	Dork #2		reatment ant
	TSP	ver #4 Lead	Ozai TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
1/2/15	9	0.006	4	0.000	5	0.007	2	0.007
1/5/15	18	0.006	19	0.006	14	0.013	9	0.006
1/6/15	13	0.006	31	0.006	27	0.007	22	0.019
1/7/15	12	0.006	9	0.000	19	0.006	17	0.006
1/8/15	17	0.006	30	0.013	27	0.020	19	0.026
1/9/15	16	0.006	33	0.006	21	0.006	23	0.065
1/12/15	18	0.006	15	0.000	14	0.007	21	0.013
1/13/15	29	0.006	22	0.006	22	0.013	17	0.013
1/13/15	14	0.006	25	0.013	18	0.019	15	0.032
1/15/15	12	0.013	23	0.026	26	0.040	9	0.020
1/16/15	11	0.013	16	0.013	20	0.020	10	0.020
1/19/15	26	0.007	36	0.020	42	0.040	26	0.013
1/20/15	7	0.013	14	0.013	17	0.020	9	0.020
	8	0.006	16	0.013	16	0.013	15	0.086
1/21/15	14	0.006	17	0.006	19	0.013	17	0.013
1/22/15	9	0.006	15	0.007	13	0.013	12	0.039
1/23/15		0.000	12	0.007	16	0.013	5	0.007
1/26/15	4	0.007	8	0.007	invalid	invalid	6	0.007
1/27/15	9		1		28	0.027	18	0.073
1/28/15	10	0.013	20	0.013	15	0.027	7	0.006
1/30/15	15	0.006	13	0.006	15	0.013	,	0.000
1								

Monthly Avg. TSP	14	19	20	14
Monthly Avg. Pb	0.008	0.009	0.016	0.025
Dec-14	0.005	0.005	0.008	0.009
Nov-14		0.009	0.012	0.017
Rolling 3-Month	0.006	0.008	0.012	0.017

Three month rolling average must be less than 0.15 ug/m3

NOTES:

National #2 - Soccer Park, 1/27, <24hr run time, main breaker on pole tripped.

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
1/6/15	18	0.006
1/8/15	16	0.006
1/13/15	29	0.006
1/15/15	14	0.013
1/20/15	14	0.013
1/22/15	13	0.007
1/27/15	6	0.007

Leadwood

Sample Results for January-2015

	Big Ri	Big River #4		South #1	Leadwoo	d East #2		North #3
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
1/2/15	9	0.006	2	0.006	2	0.006	4	0.007
1/5/15	18	0.006	12	0.006	12	0.006	12	0.006
1/6/15	13	0.006	24	0.013	13	0.000	19	0.000
1/7/15	12	0.006	26	0.012	19	0.012	14	0.000
1/8/15	17	0.006	25	0.012	19	0.012	15	0.006
1/9/15	16	0.006	28	0.012	5	0.000	17	0.006
1/12/15	18	0.006	15	0.013	15	0.006	12	0.000
1/13/15	29	0.006	18	0.012	18	0.006	20	0.006
1/14/15	14	0.006	13	0.013	11	0.006	14	0.007
1/15/15	12	0.013	9	0.013	13	0.007	17	0.013
1/16/15	11	0.007	10	0.006	13	0.006	14	0.007
1/19/15	26	0.013	23	0.020	24	0.007	23	0.007
1/20/15	7	0.013	10	0.013	7	0.007	13	0.007
1/21/15	8	0.006	7	0.006	6	0.006	8	0.007
1/22/15	14	0.006	18	0.013	11	0.006	invalid	invalid
1/23/15	9	0.006	32	0.019	7	0.006	14	0.007
1/26/15	4	0.007	4	0.006	3	0.007	6	0.007
1/27/15	9	0.006	9	0.006	8	0.006	2	0.000
1/28/15	10	0.013	16	0.006	13	0.006	9	0.000
1/30/15	15	0.006	12	0.006	9	0.006	6	0.007

Monthly Avg. TSP	14	16	11	13
Monthly Avg. Pb	0.008	0.011	0.006	0.005
Dec-14	0.005	0.007	0.005	0.004
Oct-14	0.008	0.012	0.014	0.005
Rolling 3-Month	0.007	0.010	0.009	0.005

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Leadwood North #3: 1/22, <23hr run time

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
1/6/15	18	0.006
1/8/15	16	0.006
1/13/15	29	0.006
1/15/15	14	0.013
1/20/15	14	0.013
1/22/15	13	0.007
1/27/15	6	0.007

Federal Site

Sample Results for January-2015

	St. Joe (Ballfields)	Big River#4	Water Treatment
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
1/3/15	3	2	0
1/6/15	10	9	12
1/9/15	9	8	12
1/12/15	8	16	12
1/15/15	7	1	9
1/18/15	1	5	4
1/21/15	0	4	4
1/24/15	1	1	1
1/27/15	0	2	1
1/30/15	3	1	2

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	4	5	6

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
1/6/15	5
1/12/15	9
1/18/15	3
1/24/15	1 1
1/30/15	5

Rivermines

Sample Results for **January-2015**

Sample Date	Big River #4		Rivermines North #2	
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
1/3/15	2	0	0	0
1/6/15	9	11°	9	12
1/9/15	8	7	4	12
1/12/15	16	11	8	12
1/15/15	1	11	8	9
1/18/15	5	4	0	4
1/21/15	4	7	1	4
1/24/15	1	5	0	1
1/27/15	2	. 2	1	1
1/30/15	1	8	3	2
	•			

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	5	7	3	6

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
1/6/15	5
1/12/15	9
1/18/15	3
1/24/15	1
1/30/15	5
	•

National Site

Sample Results for January-2015

	Big River #4	Ozark #1	Soccer Park #2	Water Treatment
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
1/3/15	2	5	0	0
1/6/15	9	14	11	12
1/9/15	8	11	9	12
1/12/15	16	7	6	12
1/15/15	1	11	9	9
1/18/15	5	3	9	4
1/21/15	4	5	1	4
1/24/15	1	0	4	1
1/27/15	2	3	1	1
1/30/15	1	4	4	2

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	5	6	6	6

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
1/6/15	5
1/12/15	9
1/18/15	3
1/24/15	1
1/30/15	5

Leadwood

Sample Results for January-2015

	Big River #4	Leadwood South #1	Leadwood East #2	Leadwood North #3
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
1/3/15	2	3	4	0
1/6/15	9	6	9	7
1/9/15	8	9	6	9
1/12/15	16	8	5	5
1/15/15	1	7	9	14
1/18/15	5	5	4	5
1/21/15	4	3	4	4
1/24/15	1	8	7	3
1/27/15	2	4	1	6
1/30/15	1	6	4	4

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	5	6	5	6

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
1/6/15	5
1/12/15	9
1/18/15	3
1/24/15	1
1/30/15	5

Meterological Data - Old Lead Belt January-2015

24hr av	erage
---------	-------

Date	Wind Speed (MPH)	Wind Direction	Sigma-Theta	Temperature (C)	Air Pressure (mmHg)	Rain (Inches)	Power Supply (Volts)
01-Jan-15	4.515	233.7	20.01	0.2	752	0	13.79
02-Jan-15	2.61	162.9	28.16	2.5	751	0.09	13.7
03-Jan-15	2.043	332.6	31.7	4.8	741	0.7	13.67
04-Jan-15	5.859	289.3	20.36	-2.6	752	0.04	13.76
05-Jan-15	4.399	249.3	31.75	-7.0	759	0	13.9
06-Jan-15	5.806	301.2	19.07	-2.7	755	0	13.83
07-Jan-15	10	323.4	17.58	-10.7	764	0	13.9
08-Jan-15	6.47	212.3	18.66	-10.4	755	0	14.0
09-Jan-15	6.607	292.6	18.91	-7.2	757	0	13.9
10-Jan-15	5.082	199.7	21.25	-7.1	758	0	13.9
11-Jan-15	5.106	191.8	17.31	0.9	753	0.44	13.7
12-Jan-15	7.46	357.5	17.24	-1.1	755	0.05	13.7
13-Jan-15	4.483	4.123	18.94	-7.8	758	0	13.9
14-Jan-15	1.528	215.4	27.81	-5.4	754	0	13.9
15-Jan-15	3.646	230	20.44	1.6	749	0.93	13.7
16-Jan-15	3.446	220.6	24.13	3.5	749	0	13.7
17-Jan-15	6.163		19.58	8.0	743	0	13.6
18-Jan-15	4.017		22.03	6.4	745	0	13.6
19-Jan-15	1.847		28.94	3.7	744	0	13.6
20-Jan-15	2.733	237.9	23.17	3.8	745	0	13.6
21-Jan-15	4.18	257.5	18.03	2.7	749	0	13.6
22-Jan-15	2.422	352.7	22.73	-0.8	756	0	13.7
23-Jan-15	2.624		28.49	0.4	749	0	13.7
24-Jan-15	4.732	243.8	17.69	5.8	742	0	13.6
25-Jan-15	6.38	275.6	18.16	6.3	738	0.14	13.6
26-Jan-15	4.70		20.36	0.9	745	0	13.5
27-Jan-15	4.518	307.3	20.72	2.7	747	0	13.6
28-Jan-15	7.7		22.96	4.8	748	0	13.6
29-Jan-15	9.48		18.19	6.3	749	0	13.6
30-Jan-15	3.727		31.58	0.4	757	0	13.6

March 2, 2015

Mr. Greg Henson Chemist The Doe Run Company 881 Main Street Herculaneum, Missouri 63048

RE: 1st Quarter 2015 Lead/PM10 Samplers and Meteorological System Performance Audit Report.

Dear Mr. Henson,

Please find enclosed the worksheets detailing the Lead/PM10 sampler's one-point flow verifications and meteorological sensors accuracy checks that were recently performed on the Doe Run Park Hills Monitoring Network. A copy of the current certifications for the audit devices that were used has also been enclosed.

All of the verifications and checks were found to be within expected guidelines.

After reviewing the enclosed information, please feel free to call with any comments or questions. Thank you for your business.

Sincerely,

John A. Kunkel

Inquest Environmental, Inc.

PM10 Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (Mill St.)	Intercept (Qa)	-0.00876			
Sampler_	#2 PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P1018	Station Pressure	30.04	_ "Hg	763.0	mmHg

	Flow Rate Audit								
Transfer Orifice		Sampler				Flow Rate			
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.057	23.80	44.45	0.942	1.127	6.62	± 7%		

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.70	44.26	0.942	1.127	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunkel		
Operator	The Doe Run Company	Transfer Orifice	1882		
Location	Park Hills Network	Slope (Qa)	1.04094		
Station	Leadwood (School)	Intercept (Qa)	-0.00876		
Sampler	#3 PM10	Temperature	11.0	_°C	284.2 °K
Flow Controller	P6071	Station Pressure	30.04	"Hg	763.0 mmHg

	Flow Rate Audit								
Transfer Orifice		Sampler				Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.30	1.073	23.10	43.14	0.943	1.138	6.06	± 7%		

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.00	42.96	0.944	1.139	1.070	-5.31	± 10%		

Calculations:

Pressure mmHg (Pf) - (" $H_2O/13.6$) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunkel			
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (South)	Intercept (Qa)	-0.00876		_	
Sampler	#1 PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P1500	Station Pressure	30.03	"Hg	762.8	mmHg

	<u>-</u>		Flow Ra	ite Audit			
Transfer Orifice		Sampler				Flow Rate	
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.20	1.057	24.00	44.82	0.941	1.125	6.43	± 7%

	Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.80	44.45	0.942	1.126	1.054	-6.73	± 10%			

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6)*25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	<u> </u>		_
Operator_	The Doe Run Company	Transfer Orifice	1882			_
Location	Park Hills Network	Slope (Qa)	1.04094		·	
Station	Big River	Intercept (Qa)	-0.00876			_
Sampler_	#4 Primary PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P2952	Station Pressure	30.05	_"Hg	763.3	mmHg

1	Flow Rate Audit									
Transfer Orifice		Sampler				Flow Rate				
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range			
3.20	1.057	23.90	44.64	0.942	1.113	5.30	± 7%			

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.60	44.08	0.942	1.113	1.054	-6.73	± 10%		

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor_	John Kunk	el	
The Doe Run Company	Transfer Orifice	1882		
Park Hills Network	Slope (Qa)	1.04094		
Big River	Intercept (Qa)	-0.00876		
#4 QA PM10	Temperature	11.0	_°C	284.2 °K
P1019	Station Pressure	30.05	"Hg	763.3 mmHg
	January 20, 2015 The Doe Run Company Park Hills Network Big River #4 QA PM10 P1019	The Doe Run Company Park Hills Network Slope (Qa) Big River Intercept (Qa) #4 QA PM10 Temperature	The Doe Run Company Transfer Orifice 1882 Park Hills Network Slope (Qa) 1.04094 Big River Intercept (Qa) -0.00876 #4 QA PM10 Temperature 11.0	The Doe Run Company Park Hills Network Slope (Qa) Intercept (Qa) -0.00876 #4 QA PM10 Temperature 11.0 °C

			Flow R	ate Audit			· · · · ·
Transfer Orifice Sampler					Flow Rate		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.30	1.073	24.40	45.57	0.940	1.124	4.75	± 7%

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
24.50	45.76	0.940	1.124	1.071	-5.22	± 10%	

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el	····	
Operator	The Doe Run Company	Transfer Orifice_	1882			
Location	Park Hills Network	Slope (Qa) _	1.04094			
Station_	Hanley Park/Crane St.	Intercept (Qa)	-0.00876			
Sampler_	#2 PM10	Temperature_	10.0	_°C	283.2 °K	
Flow Controller	P2949	Station Pressure	30.04_	_ "Hg	763.0 mm	Hg

	Flow Rate Audit								
Transfer Orifice Sampler				Transfer Orifice Sampler					
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.20	43.33	0.943	1.109	5.12	± 7%		

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
23.10	43.14	0.943	1.109	1.052	-6.90	± 10%	

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			_
Location _	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler	#4 PM10	Temperature	10.0	°C	283.2	°K
Flow Controller	P4353	Station Pressure	30.03	"Hg	762.8	mmHg

	Flow Rate Audit								
Transfe	Transfer Orifice Sampler				Sampler Flow Rate				
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.10	1.039	23.50	43.89	0.942	1.102	6.06	± 7%		

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
23.60	44.08	0.942	1.102	1.035	-8.41	± 10%	

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor	John Kunk	el		
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Wtr Plnt)	Intercept (Qa)	-0.00876			
Sampler	#3 PM10	Temperature	10.0	°C	283.2 °F	X.
Flow Controller	P2951	Station Pressure	30.04	"Hg	763.0 m	ımHg

	Flow Rate Audit								
Transfer Orifice			San	npler	Flow Rate				
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.10	43.14	0.943	1.116	5.78	± 7%		

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.30	43.52	0.943	1.116	1.051	-6.99	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler	#1 PM10	Temperature	10.0	_°C	283.2 °K	
Flow Controller	P4601	Station Pressure	30.04	_"Hg	763.0 m	mHg

	Flow Rate Audit								
Transfer Orifice Sampler			Orifice Sampler			Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.20	43.33	0.943	1.088	3.13	± 7%		

	Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.20	43.33	0.943	1.088	1.054	-6.73	± 10%			

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunkel			
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Above Quarry)	Intercept (Qa)	-0.00876			
Sampler	#2 PM10	Temperature	10.0	_°C	283.2 °	K
Flow Controller	P4507	Station Pressure	30.04	"Hg	763.0 n	nmHg

Flow Rate Audit								
Transfe	r Orifice	Sampler				Flow Rate		
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range	
3.20	1.055	23.30	43.52	0.943	1.108	5.02	± 7%	

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.40	43.70	0.943	1.108	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - (" $H_2O/13.6$) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunkel			
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Ozark Insul. (National)	Intercept (Qa)	-0.00876			
Sampler	#1 PM10	Temperature	10.0	_°C	283.2 °F	K
Flow Controller	P2950	Station Pressure	30.04	"Hg	763.0 m	ımHg

	Flow Rate Audit								
Transfe	r Orifice	Sampler				Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.30	43.52	0.943	1.112	5.40	± 7%		

	Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.20	43.33	0.943	1.112	1.052	-6.90	± 10%			

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

Lead/TSP Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el	
Operator	The Doe Run Company	Transfer Orifice	1882		
Location	Park Hills Network	Slope (Qa)	1.04094		
Station	Big River Primary	Intercept (Qa)	-0.00876		
Sampler	#4 TSP	Temperature	10.0	_°C	283.2 °K
Flow Controller	P4557	Station Pressure	30.03	"Hg	762.8 mmH

			Flow Ra	ate Audit				
Transfe	Transfer Orifice Sampler					C - 121		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.80	1.149	23.80	44.47	0.942	1.205	4.87	± 7%	

Sampler Operating Flow Rate							
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
24.10	45.03	0.941	1.204	1.145	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunkel			
Operator	The Doe Run Company	Transfer Orifice	1882			-
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River QA	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	°C	283.2	°K
Flow Controller	P4558	Station Pressure	30.03	- "Hg	762.8	mmHg

,, <u> </u>	Flow Rate Audit							
Transfe	r Orifice	Sampler				0 131 43		
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.80	1.149	23.50	43.91	0.942	1.201	4.53	± 7%	

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.60	44.09	0.942	1.201	1.147	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094		· · · · · · · · · · · · · · · · · · ·	
Station	Leadwood Mill St.	Intercept (Qa)	-0.00876			
Sampler	#2 TSP	Temperature	11.0	_°C	284.2 °K	
Flow Controller	P4476	Station Pressure	30.04	"Hg	763.0 mr	nHg

Flow Rate Audit							
Transfe	r Orifice	Sampler					
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.136	23.10	43.16	0.943	1.196	5.28	± 7%

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.10	43.16	0.943	1.196	1.133	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood School	Intercept (Qa)	-0.00876			
Sampler	#3 TSP	Temperature	11.0	_°C	284.2	°K
Flow Controller	P6793	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit							
Transfe	r Orifice	Sampler				6.11		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.136	23.60	44.09	0.942	1.192	4.93	± 7%	

Sampler Operating Flow Rate						
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range	
23.50	43.91	0.942	1.192	1.133	1.10 - 1.70	

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunkel			
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood South	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	11.0	_°C	284.2	°K
Flow Controller	P4559	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit								
Transfe	r Orifice	Sampler						
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.136	23.70	44.28	0.942	1.211	6.60	± 7%	

Sampler Operating Flow Rate							
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.70	44.28	0.942	1.211	1.131	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			-
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler_	#4 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P6792	Station Pressure	30.03	_ "Hg	762.8	mmHg

Flow Rate Audit							
Transfer Orifice Sampler					6 111 -111		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.134	23.20	43.35	0.943	1.198	5.64	± 7%

Sampler Operating Flow Rate					
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range
23.30	43.53	0.943	1.198	1.130	1.10 - 1.70

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	_ Auditor _	John Kunk	el	
Operator_	The Doe Run Company	Transfer Orifice	1882		
Location	Park Hills Network	Slope (Qa)	1.04094		
Station	Hanley Park (National)	Intercept (Qa)	-0.00876		
Sampler	#2 TSP	Temperature	10.0	_°C	283.2 °K
Flow Controller	P4474	Station Pressure	30.04	"Hg	763.0 mmHg

	Flow Rate Audit						
Transfer Orifice Sampler							
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.60	1.119	23.40	43.72	0.943	1.189	6.26	± 7%

Sampler Operating Flow Rate					
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range
23.60	44.09	0.942	1.187	1.113	1.10 - 1.70

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Water Plant)	Intercept (Qa)_	-0.00876			
Sampler	TSP	Temperature_	10.0	°C	283.2	٥K
Flow Controller	P4475	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit							
Transfer Orifice Sampler							
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.134	23.20	43.35	0.943	1.195	5.38	± 7%

Sampler Operating Flow Rate					
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range
23.20	43.35	0.943	1.195	1.131	1.10 - 1.70

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	1		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)_	1.04094			
Station	Rivermines (Above Quarry)	Intercept (Qa)_	-0.00876			
Sampler	#2 TSP	Temperature_	10.0	_°C	283.2	°K
Flow Controller	P2941	Station Pressure	30.04	_"Hg	763.0	mmHg

	Flow Rate Audit						
Transfe	Transfer Orifice Sampler					C. I'I.	
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.134	23.70	44.28	0.942	1.200	5.82	± 7%

Sampler Operating Flow Rate						
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range	
23.60	44.09	0.942	1.200	1.130	1.10 - 1.70	

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

/e Court, Suite E Missouri 65202 474-8110

1882 1.114/1944. 0.00024 "Hg 763.0 mmHg

to control the		
	ation r%	Acceptable Range
657	6.9 7	± 7%

tse

1.79

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	10.0	°C	283.2	°K
Flow Controller	P2940	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit								
Transfei	r Orifice		San	npler		C-1:h4:	A 4 a la la		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.60	1.119	23.90	44.65	0.941	1.197	6.97	± 7%		

	Sampler Operating Flow Rate							
ManometerPressurePress. RatioFlow RateCorrectedAcceptable"H₂O(Pf)(Po/Pa)m³/minFlow RateRange								
23.90	44.65	0.941	1.197	1.114	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - $^{"}H_2O * 1.86832$

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Above Quarry)	Intercept (Qa)	-0.00876			
Sampler	#2 TSP	Temperature	10.0	°C	283.2 °K	
Flow Controller	P2941	Station Pressure	30.04	_ "Hg	763.0 mml	Нg

Flow Rate Audit								
Transfe	r Orifice		G 121	. 11.				
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.134	23.70	44.28	0.942	1.200	5.82	± 7%	

Sampler Operating Flow Rate							
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.60	44.09	0.942	1.200	1.130	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor	John Kunk	el		
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station _	Ozark Insul (National)	Intercept (Qa)	-0.00876			
Sampler_	#1 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2939	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit								
Transfe	r Orifice		Sam	npler		0 13		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.80	1.149	23.00	42.97	0.944	1.201	4.53	± 7%	

Sampler Operating Flow Rate							
Manometer Pressure Press. Ratio Flow Rate Corrected Acceptable "H ₂ O (Pf) (Po/Pa) m³/min Flow Rate Range							
22.90	42.78	0.944	1.204	1.150	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

Calibration Orifice Certification Worksheet

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

Date - Ja Operator	•	Rootsmeter Orifice I.I	- /	833620 1882	Ta (K) - Pa (mm) -	292 - 765.81
PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2C (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3360 1.0560 0.9570 0.8870 0.6670	4.3 6.8 8.2 9.5 16.5	1.50 2.50 3.00 3.50 6.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0225 1.0191 1.0173 1.0155 1.0061	0.7654 0.9651 1.0630 1.1449 1.5084	1.2420 1.6034 1.7564 1.8972 2.4840		0.9943 0.9910 0.9892 0.9875 0.9784	0.7443 0.9385 1.0337 1.1133 1.4668	0.7563 0.9763 1.0695 1.1552 1.5125
Ostd slop intercept coefficie	(b) =	1.66236 -0.01438 0.99927		Qa slope intercept coefficie	(b) =	1.04094 -0.00876 0.99927
y axis =	SQRT [H2O (F	Pa/760) (298/5	 [a)]	y axis =	SQRT [H2O (T	?a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Meteorological Sensor's Accuracy Checks

Wind Direction Sensor Performance Audit

Operator The Doe Run Co
Location Big River

Station Name Meteorological System
Technician J Kunkel / M Kunkel

Sensor Mfg RM Young

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618

Sensor Height 10.0 Meters

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Station Declination 1.1 Deg
Measured Angle 180.0 Deg
Corrected Angle 181.1 Deg
Alignment Error -1.1 Deg

Vane	Data	Results			
Angle	Logger	Difference	Total Error		
Degrees	Degrees	± 3 Deg Limit	± 5 Deg Limit		
0/360	0.9	0.9	-0.2		
90	90.4	0.4	-0.7		
180	180.5	0.5	-0.6		
270	271.4	1.4	0.3		

8	Average Difference (Degrees)	0.8
100	Average Total Error (Degrees)	-0.3

Audit Device	Wind Vane Alignment	Direction
Туре	Pocket Transit	Vane Angle Fixture
Mfg.	Brunton	R.M. Young
Model	5008	18212
Serial No.	5080304492	None

Comments: Wind direction was verified by determining the orientation of the sensor

in respect to True North. This was measured using a tri-pod mounted transit aligned along the length of the sensor while locked from rotating. A magnetic declination of 1.1 degrees was used to determine True North. The linearity of the sensor was determined by aligning the sensor to an indexed test fixture provided by the manufacturer. The four cardinal directions were verified using the fixture. No adjustments were made to the sensor.

Wind Speed Sensor Performance Audit

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Auditor(s) J Kunkel / M Kunkel

 Date
 01/15/2015

 Start Time
 07:45

 Stop Time
 08:45

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618
Sensor Height 10.0 Meters

± (0.25 m/s + 5%)

Audit Standard		DAS Response		Limit
RPM	M/S	M/S	Difference	M/S
Zero	0.00	0.00	0.00	0.25
300	1.54	1.53	-0.01	0.25
600	3.07	3.07	0.00	0.25
1200	6.14	6.14	0.00	0.56
1800	9.22	9.22	0.00	0.71
3600	18.43	18.44	0.01	1.17
5400	27.65	27.63	-0.02	1.63
7200	36.86	36.85	-0.01	2.09
	Average		0.00	

Audit Device	Anemometer Drive	
Туре	Variable Speed	
Mfg.	R.M. Young	
Model 18801		
Serial No.	CAO1631	

Comments: Wind speed was verified using a variable speed anemometer drive. The propellor was removed from the sensor and the drive was connected using a flexible connector. The sensor was then rotated in the appropriate direction at several different speeds. Sensor responses were taken from the data logger. No adjustments were made to the sensor.

Temperature Sensor Performance Audit

Operator	The Doe Run Co
Location	Big River
Station Name	Meteorological System
Technician	J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Sensor Information

Sensor Mfg	Climatronics
Sensor Model	NA
Serial Number	NA
Sensor Height	2 meters

Audit Device	Sensor		
°C	Data Logger °C	Difference °C	
-0.8	-0.9	-0.1	
29.1	29.0	-0.1	
55.9	55.7	-0.2	
	Average	-0.1	

Note: The limit for each point is +/- 0.5 °C

Audit Device		
Туре	Digital Thermometer	
Mfg.	Control Company	
Model	15-077-8	
Serial No.	221381404	

Comments: The temperature is verified by co-locating the sensor with a certified digital thermometer. The verification is conducted at three levels using two water baths (iced and hot water) and the ambient temperature.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital thermometer. No adjustments were made to the sensor.

Barometric Pressure Sensor Performance Audit

Operator	The Doe Run Co
Location	Big River
Station Name	Meteorological System
Technician	J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Sensor Mfg	Setra	
Sensor Model	276	
Serial Number	2626447	

	Data Logger Response	
Audit Device mm HG	BP mm HG	Difference mm HG
747.10	750.40	3.30

Note: Limit is +/- 7.5 mm HG.

Audit Device		
Туре	Digital Barometer	
Mfg.	AIR	
Model	AIR-HB-1A	
Serial No.	6G3745	

Comments: The barometric pressure is verified by co-locating the sensor with a certified digital barometer. The verification was conducted at one level after allowing the sensor and calibration device ample time to stabilize.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital barometer. No adjustments were made to the sensor.

Precipitation Gauge Performance Audit

Operator	The Doe Run Co
Location	Big River
Station Name	Meteorological System
Technician -	J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Sensor Mfg	Texas Electronics	
Sensor Model	TR525I	
Serial Number	36611-805	
Diameter (inches)	6.00	

A SALUE OF THE	Data Logger Response			
Audit Device Known Tips	Gauge Tips	Difference %		
96.00	93.00	-3.13		

Note: Limit is +/- 10%.

Audit Device					
Туре	Graduated Beaker				
Mfg.	Texas Instruments				
Model	FC-525				
Serial No.	NA				

Comments: The precipitation gauge output was verified using a field calibration kit supplied by the manufacturer. The kit consists of a graduated beaker and a calibration funnel using a precision orifice at the water outlet.

Water was measured in the beaker and poured into the funnel while mounted on the gauge. The amount of precipitation recorded by the data logger was then compared to the known amount of water passing through the funnel. 100 tips equals one inch of rainfall. The gauge was cleaned and no adjustments were made.

Meteorological Audit Devices Certifications

BRUNTON OUTDOOR GROUP

CERTIFICATE OF CALIBRATION

Equipment Name:	Inquest Environmental Mitch Kunkel
Address:	3609 Majoure Court, Ste E
	Columbia MO 65207
Calibantina	terropolita to the Neticeal institute of Chardenda and Tachmology in accordance with NAU
	traceable to the National institute of Standards and Technology in accordance with MIL- A has been accomplish on the instrument listed below by comparison with standards
	by the Brunton Outdoor Group. The accuracy and stability of all standards maintained by
	o Outdoor Group are traceable to national standards maintained by the National Institute
	s and Technology in Washington, D.C. and Boulder, CO. Completed record of all work
	is maintained by the Brunton Outdoor Group and is available for inspection upon reques
	s been calibrated to Lietz TM10E serial number 30937 traceable to N.B.S. Number
738227675	this <u>fluity</u> Day <u>30</u> 20 <u>14</u> .
D 1 41-	Pocket Transit
Description	FOURIT / ransil
Purchase Ori	der <u>25643 0329</u>
, al chase of	
Order Numb	er <u>50-070367</u>
Model Numb	per <u>F-3008</u>
م ما مدر دا دا دا دا دا دا	
	er <u>50 < 03</u> 0 4 4 9 <u>2</u>
Calibration D	pate
Recalibration	Date 7/30/15
Signed /	lis Alega 1/50/14
حجم ا ب	
Luality Contro	ol Coordinator

CALIBRATION PROCEDURE 18801/18810 ANEMOMETER DRIVE

DWG: CP18801(A)

REV: C101107 BY: TJT PAGE: 2 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

MODEL:

18801 (Comprised of Models 18820 Control Unit & 18830 Motor Assembly)

SERIAL NUMBER:

CA01631

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal Motor Rpm	Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)		
600	320	600	600		
1200	640	1200	1200		
2400	1280	2400	2400		
4200	2240	4200	4200		
6,000	3200	6000	6000		
8,100	4320	8100	8100		
9,900	5280	9900	9900		
☑ Clockwise and Counterclockwise rotation verified					

	Clockwise and Counterclockwise rotation verified						
(1) (2) (3)	Measured at the optical encoder output. Frequency output produces 32 pulses per revolution of motor shaft. Indicated on the Control Unit LCD display.						
	* Indicates out of tolerance						
X	No Calibration Adjustments Required	As Found	As Left				
Тгасе	eable frequency meter used in calibration N	Model: <u>DP5740</u> Si	N: <u>4863</u>				
	of inspection action Interval One Year						
		Tested By	<u>EC</u>				

Filename: CP18801(A) doc

Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001

Cert. No.: 4000-5872220

Traceable® Certificate of Calibration for Digital Thermometer

Cust ID:Inquest Environmental Inc., 3609 Mojave Ct. Suite E, Attn. Mitchell Kunkel, Columbia, MO 65202 U S.A. (RMA:986002) Instrument Identification:

Model Numbers: 15-077-8, FB50266, 245BY S/N: 221381404 Manufacturer: Control Company

Model: 15-077-7

S/N: 51202300

Standards/Equipment:

<u>Description</u>	Serial Number	<u>Due Date</u>	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	128	3/12/15	15-CJ73J-4-1
Temperature Calibration Bath TC-218	A73332		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5202	11/30/14	15-B15PW-1-1
Temperature Calibration Bath TC-256	B01375		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5267	10/19/15	15-CD5J7-1-1

Certificate Information:

Technician: 68

Procedure: CAL-06

Cal Date: 4/14/14

Cal Due: 4/14/15

Test Conditions:

22.5°C

50.0 %RH 1007 mBar

Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tot	Min	Max	±U	TUR
°C	0.000	0.106	N	0.000	-0.001	Y	-0.050	0.050	0.013	3.8:1
°C	25.001	25.097	N	25.001	24.999	Y	24.951	25.051	0.023	2.2:1
°C	60.000	60.103	N	60.000	60.000	Y	59.950	60.050	0.014	3.6:1
°C	100,004	100.082	N	100.004	99.997	Y	99.954	100.054	0.018	2.8:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In To!=In Tolerance, Min/Max=Acceptance Range, ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance: Date=MM/DD/YY

Hid Lodrigues
Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Digital Thermometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Thermometers change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA
Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025 2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01

Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas. Certificate No. CERT-01805-2006-AQ-HOU-RvA

International Laboratory Accreditation Cooperation (ILAC) - Multifaleral Recognition Arrangement (MRA)

INSTRUMENT CORPORATION

6711 OLD BRANCH AVENUE • CAMP SPRINGS, MD 20748-6990 . (301) 449-5454 • FAX (301) 449-5455

CALIBRATION REPORT

BAROMETER/ALTIMETER AIR Model AIR-HB-1A Serial No. 6G3745

TEST POINT	TEST PRESSURE	DIGITAL READOUT	READOUT ERROR	CORRECTION REQUIRED
1	930.00	931.9	+1.9	-1.9
2	970.00	971.9	+1.9	-1.9
3	1010.00	1012.0	+2.0	-2.0
4	1050.00	1051.9	+1.9	-1.9
5	1018.01	1019.9	+1.9	-1.9

NOTES:

- 1. All data are in Millibars (hPA) and were taken at 75 F (24 C).
- 2. To correct the Digital Readout of the instrument, either algebraically add the CORRECTION REQUIRED to, or algebraically subtract the READOUT ERROR from, the readout shown on the instrument.
- 3. The TEST PRESSURE was generated using Type A-1 Barometer S/N 3327, and was approached in an increasing-pressure direction.
- 4. The TEST PRESSURE for TEST POINT 5 was ambient atmospheric pressure.
- 5. The BAROMETER/ALTIMETER was horizontal during the calibration.
- 6. The LCD screen of the BAROMETER/ALTIMETER has some trash in the center of the display, but it does not interfer with the readout.
- 7. Although the Digital Readout of the instrument can be adjusted to incorporate the average CORRECTION REQUIRED, this has not been done.

Calibration Date: 5 February 2014

Bernard I. Hass

(SEAL)